ఫ్రాక్టల్
(fractal), కల్లోలం (chaos) మొదలైన పదాలు గత మూడు నాలుగు దశాబ్దాలుగా బాగా ప్రసిద్ధి
చెందాయి.
ఫ్రాక్టల్ అనేది
జ్యామితికి (geometry) చెందిన ఒక అంశం. దీన్ని కనిపెట్టిన వాడు బెన్వా మాండెల్ బ్రో
(Benoit Mandelbrot) అనే గణితవేత్త.
ఫ్రాక్టల్ లు ఒక ప్రత్యేక కోవకి చెందిన ఆకారాలు.
బాహ్యప్రపంచంలో చూసే వస్తువులని మనం గీతలు గీసి కాగితం మీద వ్యక్తం చేస్తాం. చందమామని
పూర్ణ వృత్తంతో వ్యక్తం చేస్తాం. రైలు పట్టాలని సమాంతర రేఖలతో వ్యక్తం చేస్తాం. గదిలో
గోడలని దీర్ఘచతురస్రాలతో వ్యక్తం చేస్తాం. గోడకి ఆన్చిన నిచ్చెన కింద మనకి లంబకోణ త్రిభుజం
కనిపిస్తుంది. వృత్తాలు, సరళరేఖలు, దీర్ఘచతురస్రాలు, త్రిభుజాలు మొదలైనవన్నీ జ్యామితికి
చెందిన వస్తువులు. వాటిని బాహ్య వస్తువులకి ప్రతీకలుగా మనం వాడుకుంటాం. వృత్తాలు, దీర్ఘచతురస్రాలు
మొదలైన వాటికి ఒక ప్రత్యేక లక్షణం వుంటుంది. వాటికి లోపల, బయట అని రెండు ముఖాలు ఉంటాయి.
సమతలం (plane) మీద వాటిని గీసినప్పుడు ఆ సమతలాన్ని
అవి ‘లోపల’, ‘బయట’ అని రెండు విభాగాలుగా విభజిస్తాయి.
అయితే కొన్ని
రకాల ఆకారాల విషయంలో ఏది లోపలో, ఏది బయటో చెప్పలేని పరిస్థితి ఏర్పడుతుంది.
అలాంటి ఆకారానికి
ఒక ఉదాహరణ. కింది చిత్రంలో ఎడమ కొసన ఒక చదరం కనిపిస్తోంది (చిత్రం 1a). దాన్ని 3 X
3 గడిగా తొమ్మిది సమ భాగాలుగా విభజించినట్టు
ఊహించుకోండి. అంటే ఒక పెద్ద చదరంలో భాగాలైన తొమ్మిది చిన్న చదరాలు అన్నమాట. ఆ తొమ్మిది
చదరాలలోను చిత్రం 1b లో చూపించినట్టుగా నాలుగు చదరాలని తొలగించండి.
ఇప్పుడు ఐదు చదరాలు మిగిలాయి. ఇప్పుడు ఆ మిగిలిన ఐదు చదరాలని కూడా అదే విధంగా విభజించి
వాటిలోని ఇంకా చిన్నవైన నాలుగు చదరాలని తొలగించండి. అప్పుడు చిత్రం 1c వస్తుంది.
అదే ప్రక్రియని మరో రెండు సార్లు చేస్తే వరుసగా చిత్రాలు 1d, 1e లు వస్తాయి. అలా అనంతంగా ఆ చదరాల మాలికని విభజిస్తూ
పోతే మిగిలేది ఓ ఫ్రాక్టల్ చిత్రం. ఆరంభంలో
వున్న చదరంలో వున్నట్టుగా ఈ ఫ్రాక్టల్ కి లోపల,
వెలుపల అని వుండవు.
ఇలాంటి ఫ్రాక్టల్
ఆకారాలకి మరో ముఖ్యమైన లక్షణం వుంటుంది. వీటిని ఏ ‘స్థాయి’ (scale) నుండి చూసినా వీటి ఆకారం ఇంచుమించు ఒకేలా వుంటుంది.
ఉదాహరణకి పై చిత్రంలో చివర మిగిలిన ఆకారాన్నే తీసుకుంటే దాన్ని ఇలా వర్ణించవచ్చేమో
- మధ్యలో వున్న ‘చదరం లాంటి’ ఆకారానికి నాలుగు కొసలలో నాలుగు ‘చదరం లాంటి ఆకారాలు’
తగిలించినట్టుగా వుంది. ఇప్పుడు కొసలలో వున్న ఏ ఒక్క ‘చదరం లాంటి ఆకారాన్ని’ తీసుకున్నా
అది కూడా ‘మధ్యలో వున్న చదరం లాంటి ఆకారానికి …’ అన్నట్టుగానే వుంటుంది.
ఒక పెద్ద ఆకారంలో
ఇంకా ఇంకా చిన్న పరిమాణాల వద్ద అదే ఆకారం కనిపిస్తుంది. అంతే కాదు. ఓ పెద్ద ఆకారంలో
అణువణువునా అదే ఆకారం చిన్న చిన్న పరిమాణాల వద్ద కనిపించి విభ్రాంతి కలిగిస్తుంది.
అదే మరి ఫ్రాక్టల్ అంటే!
“చిన చేపను పెద
చేప, పెద చేపను పెను చేప…” అన్నట్టుగా ఉంటుంది ఫ్రాక్టల్ నిర్మాణం!
ఈ ఫ్రాక్టల్
అనే గణిత భావన నుండి స్ఫూర్తి గొన్న ఓ సరదా ఆట –
ఇందులో ఓ దీర్ఘ
చతురస్రంలో రెండు దీర్ఘచతురస్రాలు ఉంటాయి. ఆ రెండు దీర్ఘచతురస్రాలలో మళ్ళీ తలా రెండు
దీర్ఘచతురస్రాలు ఉంటాయి. (కథ అక్కడితో ఆగుతుంది!) (చిత్రం 2)
ఈ ఆటని ఇద్దరు
ఆడొచ్చు. ఒక్కక్క ఆటగాడి వద్ద 19 ‘పిక్కలు’ ఉంటాయి. అవి రెండు రంగుల్లో (పసుపు, నీలం
అనుకుందాం) ఉంటాయి.
ఆట మొదటి దశలో
ఆటగాళ్లు వంతుల వారీగా తమ పిక్కలని నల్ల చుక్కల మీద పెడుతూ వస్తారు. వరుస క్రమంలో “పక్క
పక్కగా” మూడు పిక్కలు పెడితే ఒక గూగోల్ (googol)
అవుతుంది. ఒక గూగోల్ ని సాధించిన ఆటగాడు, బోర్డు మీద ప్రత్యర్థికి చెందిన ఏదైనా
ఒక పిక్కని బోర్డు మీద నుండి తీసేయొచ్చు. ప్రతి ఒక్క ఆటగాడు తన పిక్కలన్నీ బోర్డు మీద
పెట్టడం పూర్తయ్యాక ఆటలో మొదటి దశ పూర్తవుతుంది.
ఇప్పట్నుంచి
ఆటగాళ్లు తమ పిక్కలని బోర్డు మీద జరుపుతూ పోవాలి. ప్రతీ పిక్క అది వున్న స్థానం నుండి
“పక్క” స్థానానికి మాత్రమే జరగగలదు. రెండు నల్ల చుక్కలని ఒక నల్ల గీత (అది సరళ రేఖ
కావచ్చు, మెలికల గీత కావచ్చు) కలుపుతూ వుంటే అవి “పక్క” పక్కన వున్న చుక్కలు అన్నమాట.
మొదటి దశలో లాగానే
రెండవ దశలో కూడా ఆట కొనసాగుతుంది. ప్రతీ ఆటగాడు గూగోల్ లని ఏర్పరచడానికి ప్రయత్నిస్తూ
ఉండాలి. అలా ఏర్పరచిన ప్రతీ సారి ప్రత్యర్థి ముక్కలు ఒక్కొటొక్కటిగా తగ్గిపోతూ వస్తాయి.
చివరికి ఏ ఆటగాడికైనా
ఇక ఆడడానికి పిక్కలే లేనప్పుడు గాని, లేక ఇద్దరు ఆటగాళ్లు ఇక జరగడానికి వీల్లేని పరిస్థితి
ఏర్పడినప్పుడు గాని ఆట ఆగిపోతుంది.
Sir, Thanks for your articles on science, really very useful and informative. Ramkrishna-Tirupati.
ఇది మనం చిన్నప్పుడు ఆడిన దాడి ఆట గుర్తుకు తెస్తుంది.
http://te.wikipedia.org/wiki/%E0%B0%A6%E0%B0%BE%E0%B0%A1%E0%B0%BF_%E0%B0%86%E0%B0%9F
రామకృష్ణ
ధన్యవాదాలు రామకృష్ణగారు...