సామాన్య దృష్టికి అందవిహీనంగా
కనిపించే వస్తువులో కూడా భావుకుడికి సౌందర్యం సాక్షాత్కరించినట్టు అలాంటి ఉద్విగ్న
భరిత పరిస్థితుల్లో కూడా గణితవేత్తల మనసు లెక్కల మీదకి పోతుంది కాబోలు. స్ట్రాండ్ అన్న
పత్రిక గణిత సమస్యల మీద ఓ సరదా శీర్షిక నడిపేది.
లోవేన్ ఉదంతం నేపథ్యంలో ఓ సారి ఆ శీర్షికలో ఓ చిత్రమైన సమస్య ప్రచురించబడింది. ఆ సమస్య
ఇలా ఉంది -
“లోవేన్ నగరంలో ఒక వీధిలో వరుసగా 1, 2, 3, … n, అని అంకెల
గుర్తులు ఉన్న ఇళ్లు ఉన్నాయి. ఈ వరుసలో ఒక ప్రత్యేకమైన ఇల్లు వుంది. దాని స్థానం x. ఆ ఇంటికి కుడి పక్క ఉన్న ఇళ్ళ మీది అంకెల మొత్తం
ఎంతో, ఎడమ పక్క ఉండే ఇళ్ళ మీది అంకెల మొత్తం కూడా అంతే. ఇప్పుడు n విలువ 50కి, 500
కి మధ్య ఉందని అనుకుంటే , n, x, ల విలువలు
ఎంత? (జర్మను సేనలు నగరాన్ని ధ్వంసం చేశాయి కనుక, నగరానికి వెళ్లి, స్వయంగా చూసి విషయం
తేల్చుకునే అవకాశాం లేదు.)”
ఈ సమస్యని ఒక
వ్యక్తి రామానుజన్ కి తెచ్చి చూపించాడు. ఆ వ్యక్తి ఎవరో కాదు – కలకత్తా కి చెందిన ప్రఖ్యాత
భారతీయ గణితవేత్త పి. సి. మహలనోబిస్ (P.C. Mahalanobis). ఆ రోజుల్లో మహలనోబిస్ కింగ్స్
కాలేజిలో చదువుకునేవాడు. ట్రైపోస్ ప్రవేశ పరీక్ష కోసం చదువుకునేవాడు. ‘వెవెల్ కోర్ట్’
అనే భవనంలో రామానుజన్ ఉండే గదికి పక్క గదిలోనే ఉండేవాడు. ఆ సమయంలో రామానుజన్ ఎంతో అపురూపంగా
గ్యాస్ స్టవ్ మీద దోరగా కూరలు వేయిస్తున్నాడు. మహలనోబిస్ వచ్చి పై సమస్య చదివి వినిపించాడు.
ఆ సమస్యకి రామానుజన్ ఠక్కున సమాధానం చెప్పాడు. ఆ పరిష్కారంలో ఒక విశేషం
వుంది. ‘అవిచ్ఛిన్న భిన్నాల’ని (continued fractions) ఉపయోగించి ఈ సమస్యని పరిష్కరించాడు.
అంతే కాక, ఈ ఒక్క సమస్యనే కాక, ఈ వర్గానికి చెందిన మరెన్నో సమస్యలని కూడా అదే దెబ్బతో
పరిష్కరించాడు. “అలా ఎలా చెయ్యగలిగావ?”ని అడిగాడు ఆ దెబ్బకి ఇంకా తేరుకోని మహలనోబిస్.
“ఏం లేదు. సమస్యని వినగానే దాని పరిష్కారం ఒక అవిచ్ఛిన్న భిన్నమే అయ్యుంటుందని అనిపించింది.
ఇంతకీ ఏంటా అవిచ్ఛిన్న భిన్నం అని ఓ సారి ప్రశ్నించుకున్నాను. వెంటనే సమాధానం మనసులో
స్ఫురించింది,” అని బదులు చెప్పాడు రామానుజన్.
పైన చెప్పుకున్న
సమస్యకి పరిష్కారాన్ని ఇలా ప్రారంభించొచ్చు. x
వ స్థానంలో ఉన్న ఇంటికి ఒక పక్క ఉన్న ఇళ్ళ అంకెల మొత్తం ఇలా వ్యక్తం చెయ్యొచ్చు.
1 + 2 + 3 …
(x-1) = x(x-1)/2
(ఇక్కడ, 1 +
2 + …+m = m(m+1)/2 అన్న సూత్రాన్ని ఉపయోగిస్తున్నాం.)
అలాగే
x వ స్థానంలో ఉన్న ఇంటికి అవతలి పక్క ఉన్న
ఇళ్ళ అంకెల మొత్తం ఇలా వ్యక్తం చెయ్యొచ్చు.
(x+1) +
(x+2) + (x+3)+ … +n = n(n+1)/2 –
(x)(x+1)/2
కనుక,
x(x-1)/2 =
n(n+1)/2 – (x)(x+1)/2
పైన సమీకరణంలోని
పదాలకి కాస్త అటు ఇటు చేస్తే,
(2n + 1)2
– 2 (2x) 2 = 1
దీన్ని మరింత
సామాన్య రూపంలో ఇలా రాసుకోవచ్చు,
u2
– 2v2 = 1
దీన్నే ‘పెల్’
(Pell) సమీకరణం అని అంటారు. ప్రాచీన భారత గణితవేత్తలైన
బ్రహ్మగుప్తుడికి, భాస్కరుడికి కూడా ఈ సమీకరణం తెలుసు కనుక దీన్ని బ్రహ్మగుప్త-భాస్కర-పెల్
సమీకరణం అని కూడా అంటారు.
ఈ సమీకరణానికి
ఒక ప్రత్యేకత ఉంది. దీని పరిష్కారం తెలిస్తే, సమీకరణాన్ని ఇలా రాసుకోవచ్చు.
(u2
–1)/v2 = 2,
లేదా
కనుక u, v విలువలు
తెలిస్తే
విలువని ఉజ్జాయింపుగా, ఒక భిన్నం రూపంలో, వ్యక్తం చెయ్యడానికి వీలుంటుంది.
(ఇంకా వుంది)
0 comments