శాస్త్ర విజ్ఞానము ఇప్పుడు మిగతా భారతీయ భాషల్లో కూడా... ఇక్కడ నొక్కి చూడండి. For Science in other Indian Languages. Please Click here.

ప్రధాన సంఖ్యల విస్తరణ సిద్ధాంతం

Posted by శ్రీనివాస చక్రవర్తి Sunday, July 14, 2013
సంఖ్యా శాస్త్రం లోకెల్లా ఆణిముత్యం లాంటి సిద్ధాంతం ఒకటుంది. దాన్ని ఇంతవరకు నిజమని గాని, తప్పని గాని నిరూపించడం సాధ్యపడలేదు. దాని పేరు గోల్డ్ బాక్ అనిర్ధారిత ప్రతిపాదన (Goldbach conjecture). 1742 లో చెయ్యబడ్డ ఈ ప్రతిపాదన యొక్క సారాంశం ఇది – “రెండు కన్నా పెద్దదైన ప్రతీ సరి సంఖ్యని రెండు ప్రధాన సంఖ్యల కూడికగా వ్యక్తం చెయ్యొచ్చు.” ఈ వాక్యాన్ని అర్థం చేసుకోడానికి కొన్ని సరళమైన ఉదాహరణలు – 12=7+5, 24=17+7, 32=29+3… (ఈ సూత్రం 4 X 10^18 వరకు వర్తిస్తుందని ప్రయోగాత్మకంగా నిర్ధారించబడింది. – వికీ). ఈ దిసలో గణనీయమైన కృషి జరిగినా అది నిజమని గణితవేత్తలు ఇంతవరకు నిరూపించలేక పోయారు. పోనీ అది తప్పని తేలుస్తూ ఓ విరుద్ధ ఉదాహరణ (counter-example) కూడా ఇవ్వలేకపోయారు.

1931 లో ష్నిరెల్ మాన్ అనే రష్యన్ గణితవేత్త ఈ సూత్రాన్ని నిరూపించే ప్రయత్నంలో మొదటి మెట్టు వేశాడు. “ప్రతీ సరి సంఖ్యని 300,000 కన్నా తక్కువ ప్రధాన సంఖ్యల కూడికగా వ్యక్తం చెయ్యొచ్చని” ఇతడు నిరూపించగలిగాడు. అయితే గోల్డ్ బాక్ సూత్రంలోని “రెండు ప్రధాన సంఖ్యల కూడిక” కి, ఈ ష్నిరెల్ మాన్ సూత్రంలోని “300,000 ప్రధాన సంఖ్యల కూడిక”కి మధ్య అగాధమైన వ్యత్యాసం వుంది. ఆ అగాధాన్ని మరి కాస్త కుంచింపజేసినవాడు వినొగ్రాడోవ్ అనే రష్యన్ గణితవేత్త. ఆ సూత్రాన్ని ఇతడు “నాలుగు ప్రధాన సంఖ్యల కూడిక” స్థాయికి తెచ్చాడు. కాని వినొగ్రాడోవ్ నిరూపణలోని నాలుగు ప్రధాన సంఖ్యలకి గోల్డ్ బాక్ సూత్రంలోని రెండు ప్రధాన సంఖ్యలకి మధ్య దూరాన్ని పూరించడం మాత్రం అత్యంత కఠినమైన సవాలుగా పరిణమించింది. ఇంత కఠినమైన ప్రతిపాదనను నిరూపించడానికి కొన్ని ఏళ్లు పడుతుందా, లేక శతాబ్దాలు పడుతుందా అని ఎవరూ చెప్పలేకున్నారు.

ఆ విధంగా అమితమైన ప్రధాన సంఖ్యలని పుట్టించగల సూత్రాన్ని ఇంతవరకు ఎవరూ కనుక్కోలేకపోయారు. అసలు అలాంటి సూత్రాన్ని అసలు ఎప్పటికైనా కనుక్కోవడానికి వీలవుతుందో లేదో కూడా ఎవరికీ తెలీదు.

ఇప్పుడు మరి కాస్త సరళమైన ప్రశ్న వేసుకుందాం. ఒక సంఖ్యా విస్తృతిలో ఎంత శాతం ప్రధాన సంఖ్యలు ఉంటాయి? మనం ఇంకా ఇంకా పెద్ద సంఖ్యలని పరిగణిస్తున్న కొద్ది ఆ శాతం స్థిరంగా ఉంటుందా, లేక మారుతుందా? మారితే పెరుగుతుందా, తరుగుతుందా? ఈ ప్రశ్నని అర్థం చేసుకోడానికి కొన్ని ఉదాహరణలు చూద్దాం. ఉదాహరణకి 100 కన్నా చిన్న ప్రధాన సంఖ్యలు 26 ఉన్నాయి. 1000 కన్నా చిన్నవి 168 ఉన్నాయి. పది లక్షల కన్నా చిన్నవి 79,498 ఉన్నాయి. 1,00,00,00,000 కన్నా చిన్నవి 5,08,47,478 ఉన్నాయి. ఈ సమాచారం శాతాల (నిష్పత్తి) రూపంలో ఈ కింది పట్టికలో వ్యక్తం చెయ్యబడింది.

సంఖ్యా విస్తృతి పెరుగుతున్న కొద్ది అందులోని ప్రధాన సంఖ్యల శాతం లేదా నిష్పత్తి తగ్గిపోతూ ఉండడం పై పట్టికలో గమనించొచ్చు. అయితే ఎంత పెద్ద సంఖ్యల వరకు పోయినా అసలు ప్రధాన సంఖ్యలే లేని పరిస్థితి మాత్రం లేదని గమనించొచ్చు. పెద్ద సంఖ్యలలో తరిగిపోతున్న ప్రధాన సంఖ్యల శాతాన్ని వ్యక్తం చెయ్యడానికి మరింత క్రమబద్ధమైన పద్ధతి ఏదైనా వుందా? వుంది. ప్రధాన సంఖ్యల విస్తరణ గురించిన ధర్మం అసలు మొత్తం గణితంలోనే ఓ అపురూపమైన సత్యం అని చెప్పుకోవాలి. ఈ ధర్మం ప్రకారం – “1 కి N అనే పెద్ద సంఖ్యకి మధ్య ఉండే ప్రధాన సంఖ్యల శాతాన్ని ఉజ్జాయింపుగా 1/log(N) అని వ్యక్తం చెయ్యొచ్చు.” అయితే ఇక్కడ మనం వాడే లాగరిథమ్ (సంవర్గమానం) కి ఆధారం 10 కాదని, ఇది సహజ సంవర్గమానం (natural logarithm) అని గుర్తుంచుకోవాలి. N విలువ పెద్దది అవుతున్న కొద్ది ఈ ఉజ్జాయింపు మరింతగా నిర్దుష్టం అవుతుంటుంది.

[N కన్నా చిన్న ప్రధాన సంఖ్యల సంఖ్యని pi(N) అనే ప్రమేయంతో సూచిస్తారు. ఈ pi(N) ని ఉజ్జాయింపుగా Pi(N) = N/ln(N) అని సూచించొచ్చు. కనుక N కన్నా చిన్న ప్రధాన సంఖ్యల నిష్పత్తిని Pi(N)/N = 1/ln(N) అని వ్యక్తం చెయ్యొచ్చు. - అనువాదకుడు]

గణిత శాస్త్రంలో ఎన్నో సిద్ధాంతాల లాగానే పైన చెప్పుకున్న ‘ప్రధాన సంఖ్యల సిద్ధాంతం’ కూడా మొదట కేవలం ప్రయోగాత్మక పద్ధతితో కనుక్కున్నారు. శాస్త్రీయ, సైద్ధాంతిక పద్ధతిలో దాన్ని నిరూపించడానికి చాలా కాలం పట్టింది. చివరికి పందొమ్మిదవ శతాబ్దపు అంతంలో ఫ్రెంచ్ గణితవేత్త హదమార్, మరియు బెల్జియన్ గణిత వేత్త ద ల వాలే పూసాన్ లు పై సిద్ధాంతాన్ని శాస్త్రీయంగా నిరూపించారు. అత్యంత జటిలమైన గణితవిధానాలని వినియోగించి చేసిన ఆ నిరూపణని ఇక్కడ వివరించడానికి వీలుపడదు.

(ఇంకా వుంది)

1 Responses to ప్రధాన సంఖ్యల విస్తరణ సిద్ధాంతం

  1. the tree Says:
  2. చాలా ఉపయోగకరమైన సమాచారం,.ధన్యవాదాలు సార్

     

Post a Comment

postlink

సైన్సు పుస్తకాలు ఇక్కడ నుంచి కొనవచ్చు.. click on image

అంతరిక్షం చూసొద్దాం రండి

"తారావళీ సూపర్ ట్రావెల్స్" తరపున స్వాగతం... సుస్వాగతం!" "తారావళీ సూపర్ ట్రావెల్స్" గురించి ప్రత్యేకించి మీకు చెప్పనవసరం లేదు. తారాంతర యాత్రా సేవలు అందించడంలో మాకు 120 ఏళ్ల అనుభవం ఉంది. మా హెడ్ క్వార్టర్స్ భూమి మీదే ఉన్నా, సౌరమండలం బయట మాకు చాలా బ్రాంచీలు ఉన్నాయని మీకు బాగా తెలుసు. అంతరిక్షానికి వెళ్ళడానికి ఇక్కడ నొక్కండి

Printer-friendly gadget

Print

ఈ బ్లాగులోని పోస్ట్ లు ఆటోమేటిక్ గా మీ మెయిల్ ఇన్బాక్స్ లోకి చేరడానికి మీ ఈ-మెయిల్ ఐడీని ఎంటర్ చేసి చందాదారులు కండి Enter your email address:

Delivered by FeedBurner

Total

Blogumulus by Roy Tanck and Amanda FazaniInstalled by CahayaBiru.com

Label Category

Followers

archive

Total Pageviews

There was an error in this gadget
There was an error in this gadget

విజ్ఞానులు

GuestBooker 2.5

Recent Posts

Popular Posts

Follow by Email