చిన్నప్పుడు చదువుకున్న అంకగణితం బట్టి ప్రతీ భిన్నాన్ని అనంత, ఆవర్తక దశాంశ సంఖ్య రూపంలో రాయొచ్చునని మనకి తెలుసు.
ఉదాహరణకి,
2/3 = 0.666666… = 0.(6)
(బ్రాకెట్లలో ఉన్న సంఖ్య పదే పదే ఆవృత్తమవుతుందని ఉద్దేశం)
అలాగే,
3/7 = 0.428571
428571
… = 0.(428571)…
మొత్తం భిన్నాల సంఖ్య, మొత్తం పూర్ణ సంఖ్యల సంఖ్యతో సమానం అని పైన నిరూపించాం. అంటే మొత్తం ఆవర్తక దశాంశ భిన్నాల (periodic decimal fractions) సంఖ్య, మొత్తం పూర్ణ సంఖ్యల సంఖ్యతో సమానం అని అర్థమవుతోంది. కాని ఓ గీత మీద ఉండే బిండువులు అన్నిటినీ ఆవర్తక దశాంశ భిన్నాల రూపంలో వ్యక్తం చెయ్యలేం. నిజానికి అధిక శాతం దశాంశ సంఖ్యలలో ఆవర్తకత ఉండనే ఉండదు. అలాంటి పక్షంలో సంఖ్యలని వరుసక్రమంలో అమర్చడం సాధ్యం కాధని సులభంగా నిరూపించొచ్చు.
ఐతే అందుకు విరుద్ధంగా గీత మీద ఉండే బిందులకి సంబంచిన దశాంశ సంఖ్యలని వరుస క్రమంలో పూర్ణ సంఖ్యలకి జతగా అమర్చవచ్చనే అనుకుందాం. అలాంటి పట్టిక ఈ కింది చిత్రంలో లాగా ఉంటుందని అనుకుందాం.
అయితే అనంతమైన సంఖ్యలని, వాటిలో ఒక్కొక్క సంఖ్యకి అనంతమైన దశాంశ స్థానాలు ఉండేలా రాసివ్వడం వాస్తవంలో సాధ్యం కాదు. పోనీ అలాంటి పట్టిక లాంటిది ఉన్నా, దాన్ని నిర్మించిన రచయిత ఏదో సామాన్యమైన సూత్రాన్ని వాడి ఆ సంఖ్యలకి చెందిన దశాంశ రూపాన్ని లెక్కించి ఉంటాడని అనుకోవాలి. అలాంటి సూత్రాన్ని ఉపయోగిస్తే మనం ఊహించదగ్గ ప్రతీ దశాంశ సంఖ్య ఆ పట్టికలో ఎక్కడో ఒక చోట కనిపించాలి.
అయితే అలాంటి నిర్మాణం అసంభవం అని నిరూపించడం పెద్ద కష్టం కాదు. ఎందుకంటే పైన అనుకున్న పట్టికలో లేని దశాంశ సంఖ్యలని సృష్టించొచ్చు. అంతే కాదు, అలాంటి వాటిని అనంతమైన సంఖ్యలని సృష్టించొచ్చు.
పట్టికలో లేని దశాంశ సంఖ్యలలో ఒక సంఖ్యని ఎలా రాయొచ్చో ముందు చూద్దాం.
ఉదాహరణకి ఈ కింది దశాంశ సంఖ్యని గమనిద్దాం. ఈ సంఖ్యలోని మొదటి దశాంశ స్థానంలో ఉన్న అంకె, పట్టికలోని మొదటి సంఖ్య (N1) లో మొదటి దశాంశ సంఖ్యతో సమానం కాకుండా చూసుకోవాలి.
అలాగే ఈ సంఖ్యలోని రెండవ దశాంశ స్థానంలోని అంకె, పట్టిక లోని రెండవ స్థానంలో ఉన్న సంఖ్యలో ని దశాంస స్థానంలో ఉన్న సంఖ్యతో సమానం కాకుండా చూసుకోవాలి. ఇలా ఒక్కొక్క దశాంశ స్థానంలో ఉన్న అంకెలని నిర్దేశించవచ్చు. అలా నిర్మించబడ్డ దశాంశ సంఖ్య పైన పట్టికలోని దశాంశ సంఖ్యలు వేటితోనూ సమానం కాదని సులభంగా నిరూపించవచ్చు. మనకి వ్యతిరేకించడానికి ఎవరైనా మనం అనుకున్నసంఖ్య నిజానికి పైన పట్టికలో 137 వ స్థానంలో ఉంటుందని అన్నారంటే, అది తప్పని ఇట్టే నిరూపించొచ్చు. ఎందుకంటే 137 వ దశాంశ స్థానంలో ఆ రెండు సంఖ్యలూ వేరని సులభంగా చెప్పొచ్చు.
కనుక ఒక గీత మీద ఉండే బిందువులని వ్యక్తం చేసే సంఖ్యలకి, పూర్ణ సంఖ్యలకి మధ్య ‘ఒకటికి ఒకటి’ పద్ధతిలో సంబంధాన్ని కూర్చడం అసంభవం అని నిరూపించొచ్చు. అంటే గీత మీద బిందువుల అనంతత, పూర్ణ సంఖ్యల అనంతత కన్నా పెద్దది అన్నమాట.
ఇంతవరకు మనం గీత మీద బిందువులు అన్నప్పుడు, 1 అంగుళం పొడవున్న గీత మీద బిందువులని ఉద్దేశించి మాట్లాడాం. అందుకు బదులుగా ఎంత పొడవు ఉన్న గీతనైనా తీసుకోవచ్చు. గీత పొడవు ఎంతైనా పై ఫలితం వర్తిస్తుంది. ఎందుకంటే గీత పొడవు అంగుళం అయినా, అడుగు అయినా, మైలు అయినా అందులోని బిందువుల సంఖ్య ఒక్కటే.
అది నిరూపించడానికి ఈ కింది చిత్రం చూడండి.
ఈ చిత్రంలో AB మరియు AC అనే రెండు గీతలలోని బిందువుల మధ్య సంబంధాన్ని స్థాపిస్తున్నాం. అది చెయ్యడానికి AB మీద ఉన్న ప్రతీ బిందువు లోంచి BC కి సమాంతరంగా ఉండేలా గీతలు గీస్తూ పోవాలి. అలా గీసిన ప్రతీ గీత AC ని ఒక చోట కలుసుకుంటుంది. ఇలాంటి నిర్మాణం సహాయంతో AB మీద బిందువులకి, AC మీద బిందువులకి మధ్య సంబంధాన్ని వ్యక్తం చెయ్యొచ్చు. కనుక AB, AC లలో ఉండే బిందువుల సంఖ్య ఒక్కటే నని నిరూపించగలిగాం.
ఇంత కన్నా విపరీతమైన ఓ ఫలితాన్ని నిరూపిద్దాం. ఒక సమతలం (plane) మీద ఉండే మొత్తం బిందువుల సంఖ్య, ఓ సరళ రేఖ మీద ఉండే మొత్తం బిందువుల సంఖ్యతో సమానం.
ఈ విషయాన్ని నిరూపించడానికి అంగుళం పొడవున్న AB అనే ఓ గీతని, అంగుళం భుజం గల CDEF అనే ఓ చదరాన్ని తీసుకుందాం. ఈ రెండు వస్తువుల మీద ఉండే బిందువుల సంఖ్య ఒక్కటేనని నిరూపిద్దాం.
ఉదాహరణకి గీత మీద ఉండే ఓ బిందువుకి సంబంధించిన సంఖ్య విలువ 0.75120386 అనుకుందాం. ఈ దశాంశ సంఖ్యలో బేసి, సరి స్థానాలలో ఉన్న అంకెలని తీసుకుని రెండు వేరు వేరు దశాంశ సంఖ్యలని ఇలా తయారు చెయ్యవచ్చు.
బేసి స్థానాలలోని అంకెలని తీసుకుంటే వచ్చే సంఖ్య = 0.7108…
సరి స్థానాలలోని అంకెలని తీసుకుంటే వచ్చే సంఖ్య = 0.5236…
ఈ రెండు విలువలకి సంబంధించిన దూరాలని తీసుకుని, చదరంలో అడ్డుగాను, నిలువుగాను కొలిచి, ఓ బిందువుగా వ్యక్తం చెయ్యొచ్చు.
ఇదే ప్రక్రియని వ్యతిరేక దిశలో కూడా చెయ్యొచ్చు. చదరంలో ఉదాహరణకి ఓ బిందువుని తీసుకుని, అడ్డు, నిలువు దిశలలో దాని దూరాలని రెండు దశాంశ సంఖ్యలుగా వ్యక్తం చేస్తే,
0.4835…
0.9907…
ఈ రెండిటినీ మేళవించి, ఓ కొత్త దశాంశ సంఖ్యని ఈ విధంగా తయారు చెయ్యొచ్చు.
0.49893057…
ఈ ప్రక్రియ చేత రెండు బిందు సమూహాల మధ్య ‘ఒకటికి ఒకటి’ అనే తీరులో సంబంధాన్ని వ్యక్తం చెయ్యొచ్చు. గీత మీద ఉండే ప్రతీ బిందువుకి, దాని జంట బిందువుని చదరం మీద కనిపెట్టొచ్చు. అలాగే చదరం మీద ఉండే ప్రతీ బిందువుకి దాని జంట బిందువుని గీత మీద కనుక్కోవచ్చు. కనుక కాంటర్ నియమం ప్రకారం, గీత మీద ఉండే బిందువుల సంఖ్య, సమతలం మీద ఉండే బిందువుల సంఖ్యతో సమానం.
(ఇంకా వుంది)
ఉదాహరణకి,
2/3 = 0.666666… = 0.(6)
(బ్రాకెట్లలో ఉన్న సంఖ్య పదే పదే ఆవృత్తమవుతుందని ఉద్దేశం)
అలాగే,
3/7 = 0.428571
428571
… = 0.(428571)…
మొత్తం భిన్నాల సంఖ్య, మొత్తం పూర్ణ సంఖ్యల సంఖ్యతో సమానం అని పైన నిరూపించాం. అంటే మొత్తం ఆవర్తక దశాంశ భిన్నాల (periodic decimal fractions) సంఖ్య, మొత్తం పూర్ణ సంఖ్యల సంఖ్యతో సమానం అని అర్థమవుతోంది. కాని ఓ గీత మీద ఉండే బిండువులు అన్నిటినీ ఆవర్తక దశాంశ భిన్నాల రూపంలో వ్యక్తం చెయ్యలేం. నిజానికి అధిక శాతం దశాంశ సంఖ్యలలో ఆవర్తకత ఉండనే ఉండదు. అలాంటి పక్షంలో సంఖ్యలని వరుసక్రమంలో అమర్చడం సాధ్యం కాధని సులభంగా నిరూపించొచ్చు.
ఐతే అందుకు విరుద్ధంగా గీత మీద ఉండే బిందులకి సంబంచిన దశాంశ సంఖ్యలని వరుస క్రమంలో పూర్ణ సంఖ్యలకి జతగా అమర్చవచ్చనే అనుకుందాం. అలాంటి పట్టిక ఈ కింది చిత్రంలో లాగా ఉంటుందని అనుకుందాం.
అయితే అనంతమైన సంఖ్యలని, వాటిలో ఒక్కొక్క సంఖ్యకి అనంతమైన దశాంశ స్థానాలు ఉండేలా రాసివ్వడం వాస్తవంలో సాధ్యం కాదు. పోనీ అలాంటి పట్టిక లాంటిది ఉన్నా, దాన్ని నిర్మించిన రచయిత ఏదో సామాన్యమైన సూత్రాన్ని వాడి ఆ సంఖ్యలకి చెందిన దశాంశ రూపాన్ని లెక్కించి ఉంటాడని అనుకోవాలి. అలాంటి సూత్రాన్ని ఉపయోగిస్తే మనం ఊహించదగ్గ ప్రతీ దశాంశ సంఖ్య ఆ పట్టికలో ఎక్కడో ఒక చోట కనిపించాలి.
అయితే అలాంటి నిర్మాణం అసంభవం అని నిరూపించడం పెద్ద కష్టం కాదు. ఎందుకంటే పైన అనుకున్న పట్టికలో లేని దశాంశ సంఖ్యలని సృష్టించొచ్చు. అంతే కాదు, అలాంటి వాటిని అనంతమైన సంఖ్యలని సృష్టించొచ్చు.
పట్టికలో లేని దశాంశ సంఖ్యలలో ఒక సంఖ్యని ఎలా రాయొచ్చో ముందు చూద్దాం.
ఉదాహరణకి ఈ కింది దశాంశ సంఖ్యని గమనిద్దాం. ఈ సంఖ్యలోని మొదటి దశాంశ స్థానంలో ఉన్న అంకె, పట్టికలోని మొదటి సంఖ్య (N1) లో మొదటి దశాంశ సంఖ్యతో సమానం కాకుండా చూసుకోవాలి.
అలాగే ఈ సంఖ్యలోని రెండవ దశాంశ స్థానంలోని అంకె, పట్టిక లోని రెండవ స్థానంలో ఉన్న సంఖ్యలో ని దశాంస స్థానంలో ఉన్న సంఖ్యతో సమానం కాకుండా చూసుకోవాలి. ఇలా ఒక్కొక్క దశాంశ స్థానంలో ఉన్న అంకెలని నిర్దేశించవచ్చు. అలా నిర్మించబడ్డ దశాంశ సంఖ్య పైన పట్టికలోని దశాంశ సంఖ్యలు వేటితోనూ సమానం కాదని సులభంగా నిరూపించవచ్చు. మనకి వ్యతిరేకించడానికి ఎవరైనా మనం అనుకున్నసంఖ్య నిజానికి పైన పట్టికలో 137 వ స్థానంలో ఉంటుందని అన్నారంటే, అది తప్పని ఇట్టే నిరూపించొచ్చు. ఎందుకంటే 137 వ దశాంశ స్థానంలో ఆ రెండు సంఖ్యలూ వేరని సులభంగా చెప్పొచ్చు.
కనుక ఒక గీత మీద ఉండే బిందువులని వ్యక్తం చేసే సంఖ్యలకి, పూర్ణ సంఖ్యలకి మధ్య ‘ఒకటికి ఒకటి’ పద్ధతిలో సంబంధాన్ని కూర్చడం అసంభవం అని నిరూపించొచ్చు. అంటే గీత మీద బిందువుల అనంతత, పూర్ణ సంఖ్యల అనంతత కన్నా పెద్దది అన్నమాట.
ఇంతవరకు మనం గీత మీద బిందువులు అన్నప్పుడు, 1 అంగుళం పొడవున్న గీత మీద బిందువులని ఉద్దేశించి మాట్లాడాం. అందుకు బదులుగా ఎంత పొడవు ఉన్న గీతనైనా తీసుకోవచ్చు. గీత పొడవు ఎంతైనా పై ఫలితం వర్తిస్తుంది. ఎందుకంటే గీత పొడవు అంగుళం అయినా, అడుగు అయినా, మైలు అయినా అందులోని బిందువుల సంఖ్య ఒక్కటే.
అది నిరూపించడానికి ఈ కింది చిత్రం చూడండి.
ఈ చిత్రంలో AB మరియు AC అనే రెండు గీతలలోని బిందువుల మధ్య సంబంధాన్ని స్థాపిస్తున్నాం. అది చెయ్యడానికి AB మీద ఉన్న ప్రతీ బిందువు లోంచి BC కి సమాంతరంగా ఉండేలా గీతలు గీస్తూ పోవాలి. అలా గీసిన ప్రతీ గీత AC ని ఒక చోట కలుసుకుంటుంది. ఇలాంటి నిర్మాణం సహాయంతో AB మీద బిందువులకి, AC మీద బిందువులకి మధ్య సంబంధాన్ని వ్యక్తం చెయ్యొచ్చు. కనుక AB, AC లలో ఉండే బిందువుల సంఖ్య ఒక్కటే నని నిరూపించగలిగాం.
ఇంత కన్నా విపరీతమైన ఓ ఫలితాన్ని నిరూపిద్దాం. ఒక సమతలం (plane) మీద ఉండే మొత్తం బిందువుల సంఖ్య, ఓ సరళ రేఖ మీద ఉండే మొత్తం బిందువుల సంఖ్యతో సమానం.
ఈ విషయాన్ని నిరూపించడానికి అంగుళం పొడవున్న AB అనే ఓ గీతని, అంగుళం భుజం గల CDEF అనే ఓ చదరాన్ని తీసుకుందాం. ఈ రెండు వస్తువుల మీద ఉండే బిందువుల సంఖ్య ఒక్కటేనని నిరూపిద్దాం.
ఉదాహరణకి గీత మీద ఉండే ఓ బిందువుకి సంబంధించిన సంఖ్య విలువ 0.75120386 అనుకుందాం. ఈ దశాంశ సంఖ్యలో బేసి, సరి స్థానాలలో ఉన్న అంకెలని తీసుకుని రెండు వేరు వేరు దశాంశ సంఖ్యలని ఇలా తయారు చెయ్యవచ్చు.
బేసి స్థానాలలోని అంకెలని తీసుకుంటే వచ్చే సంఖ్య = 0.7108…
సరి స్థానాలలోని అంకెలని తీసుకుంటే వచ్చే సంఖ్య = 0.5236…
ఈ రెండు విలువలకి సంబంధించిన దూరాలని తీసుకుని, చదరంలో అడ్డుగాను, నిలువుగాను కొలిచి, ఓ బిందువుగా వ్యక్తం చెయ్యొచ్చు.
ఇదే ప్రక్రియని వ్యతిరేక దిశలో కూడా చెయ్యొచ్చు. చదరంలో ఉదాహరణకి ఓ బిందువుని తీసుకుని, అడ్డు, నిలువు దిశలలో దాని దూరాలని రెండు దశాంశ సంఖ్యలుగా వ్యక్తం చేస్తే,
0.4835…
0.9907…
ఈ రెండిటినీ మేళవించి, ఓ కొత్త దశాంశ సంఖ్యని ఈ విధంగా తయారు చెయ్యొచ్చు.
0.49893057…
ఈ ప్రక్రియ చేత రెండు బిందు సమూహాల మధ్య ‘ఒకటికి ఒకటి’ అనే తీరులో సంబంధాన్ని వ్యక్తం చెయ్యొచ్చు. గీత మీద ఉండే ప్రతీ బిందువుకి, దాని జంట బిందువుని చదరం మీద కనిపెట్టొచ్చు. అలాగే చదరం మీద ఉండే ప్రతీ బిందువుకి దాని జంట బిందువుని గీత మీద కనుక్కోవచ్చు. కనుక కాంటర్ నియమం ప్రకారం, గీత మీద ఉండే బిందువుల సంఖ్య, సమతలం మీద ఉండే బిందువుల సంఖ్యతో సమానం.
(ఇంకా వుంది)
0 comments