శాస్త్ర విజ్ఞానము ఇప్పుడు మిగతా భారతీయ భాషల్లో కూడా... ఇక్కడ నొక్కి చూడండి. For Science in other Indian Languages. Please Click here.

వేగాల కూడిక సిద్ధాంతం – (సు.సా. 7)

Posted by శ్రీనివాస చక్రవర్తి Wednesday, July 21, 2010


కాంతి మూలం ఏ దిశలో ప్రయాణించినా, ఎంత వేగంతో ప్రయాణించినా దాని నుండి వెలువడే కాంతి మాత్రం శూన్యంలో ఎప్పుడూ ఒకే కచ్చితమైన వేగంతో ప్రయాణించడం శాస్త్రవేత్తలకి ఆశ్చర్యం కలిగించింది. ఎందుకంటే ఓ కదిలే వస్తువుకి మనం ఎదురు వెళ్తే, అది మన వైపుగా మరింత వేగంతో వస్తున్నట్టు అనిపిస్తుంది. అలాగే ఓ కదిలే వస్తువుని మనం వెంబడిస్తే మన నుండి మరింత తక్కువ వేగంతో కదులుతున్నట్టు అనిపిస్తుంది. చలనానికి సంబంధించి ఇది చాలా ప్రాథమికమైన విషయం.


శబ్దం విషయంలో కూడా ఈ సూత్రం వర్తిస్తుంది. ఉదాహరణకి దూరంగా ఉన్న ఓ శబ్దమూలం (లౌడ్ స్పీకర్ లాంటిది) నుండి ఓ శబ్ద తరంగం మన దిశగా వస్తోంది అనుకుందాం. దాన్ని మనం ఓ కారులో దానికి ఎదురెళ్లి కలుసుకుంటున్నాం అనుకుందాం. అలాంటి పరిస్థితుల్లో శబ్దం యొక్క వేగం మరింత ఎక్కువైనట్టు అనిపిస్తుంది. అలాగే మనం కారులో వెళ్తున్నప్పుడు మన వెనుక నుండి వచ్చిన శబ్ద తరంగం మనని దాటుకుంటూ ముందుకి పోతున్నప్పుడు, శబ్దం యొక్క వేగం మరింత తక్కువైనట్టు అనిపిస్తుంది. రెండు కదిలే వస్తువుల మధ్య సాపేక్ష వేగాన్ని కొలిచే టప్పుడు ఈ విధంగా వేగాలని కూడడం, తీసేయడం పరిపాటిగా చేసేదే.

కాని ఆశ్చర్యం ఏంటంటే ఇలాంటి పరిణామాలేవీ కాంతి విషయంలో కనిపించలేదు. ఎలా కొలిచినా కాంతి వేగం మాత్రం శూన్యంలో స్థిరంగా 300,000 కిమీ/సెకను ఉండడం కనిపించింది.

“బాగానే ఉంది గాని, చిన్న చిన్న వేగాలని కలిపి కలిపి కాంతి వేగాన్ని మించిన వేగాన్ని సాధించలేమా?” అని మీరు అడగవచ్చు.

ఉదాహరణకి ఓ రైలు కాంతి వేగంలో మూడోవంతు వేగంతో కదులుతోంది అనుకుందాం. దాని మీద ఓ హీరో ఎవడో కాంతి వేగంలో మూడోవంతు వేగంతో ఉరుకుతున్నాడు అనుకుందాం.

పైన చెప్పుకున్న ’వేగాల కూడిక’ సిద్ధాంతం ప్రకారం, రైలు బయట నుండి చూసే వారికి హీరో కాంతి వేగానికి ఒకటిన్నర రెట్లు వేగంతో కదులుతున్నట్టు అనిపిస్తుంది! అంటే మన హీరో గారు పరుగుపందెంలో కాంతిని కూడా చిత్తుగా ఓడించగలరు అన్నమాట. కాని వాస్తవం ఏంటంటే హీరోగారి వేగం కాంతివేగం కన్నా తక్కువే ఉంటుంది. ఎంతటి హీరో అయినా కాంతి వేగాన్ని ఎవరూ అధిగమించలేరు అంటుంది సాపేక్షతా సిద్ధాంతం. మరి అంత పెద్ద వేగాల వద్ద ’వేగాల కూడిక’ సిద్ధాంతం ఉల్లంఘించబడ్డప్పుడు, తక్కువ వేగాల వద్ద కూడా అది ఉల్లంఘించబడుతోందా? అన్న ప్రశ్నబయల్దేరుతుంది.

దాని గణితపరమైన వివరాలన్నీ ఇక్కడ విపులంగా చర్చించబోవడం లేదు గాని, ఎదురెదురుగా v1, v2 వేగాలతో కదులుతున్న రెండు వస్తువుల మధ్య సాపేక్ష వేగాన్ని (v) తెలిపే సూత్రం,
V= v1 + v1 కాదు. అసలు సూత్రం,

V = (v1 + v2)/(1 + (v1*v2)/(c*c)) (1)

ఇక్కడ c అంటే శూన్యంలో కాంతి వేగం అన్నమాట.
అలాగే ఒకే దిశలో v1, v2 వేగాలతో కదులుతున్న రెండు వస్తువుల మధ్య సాపేక్ష వేగాన్ని (v) తెలిపే సూత్రం,
V= v1 - v1 కాదు. అసలు సూత్రం,

V = (v1 - v2)/(1 - (v1*v2)/(c*c)) (2)

పై రెండు సూత్రాలలోను (eqns. (1,2)) v1, v2 విలువలు (కాంతి వేగంతో పోలిస్తే) బాగా చిన్నవైతే, హారం (denominator) లో ఉన్న (v1*v2)/(c*c) అన్న విలువ చాలా చిన్నది అవుతుంది. కనుక ఆ రాశిని నిర్లక్ష్యం చేస్తే పై రెండు సూత్రాలు ఇలా మారుతాయి,
V = v1 + v2, లేదా V = v1-v2

అంటే సాంప్రదాయక ’వేగాల కూడిక’ సూత్రంగా మారిపోతాయన్నమాట.

ఈ కొత్త సూత్రం ప్రకారం పైన ఇవ్వబడ్డ ఉదాహరణలో బయటి నుండి చూస్తున్న వారి బట్టి హీరో వేగం ఎంతో లెక్కెడితే,

V1 = ¾ c, v2 = ¾ c, కనుక, పైన సూత్రంలో ప్రతిక్షేపిస్తే (substitute),

V = ( ¾ c + ¾ c) /(1 + ( ¾ c * ¾ c)/(c*c)) = 24/25 c
అని వస్తుంది. అంటే సాపేక్ష వేగం, కాంతి వేగం, c, కన్నా తక్కువే నన్నమాట.

ఈ సూత్రం ప్రకారం రెండు వేగాల సాపేక్ష వేగం ఆ రెండు వేగాల కూడిక కన్నా కాస్త తక్కువే ఉంటుంది.

ఆ విధంగా గరిష్ఠ వేగం అనేది ఒకటి ఉంటుందని ఒప్పుకుంటే, దాని దృష్ట్యా కాల, ఆయతనాలకి సంబంధించిన సాంప్రదాయక భావాలని ఒకసారి మళ్లీ సమీక్షించాల్సి ఉంటుంది.
ఈ కొత్త ఫలితం వల్ల ముఖ్యంగా ’ఏకకాలీనత’ (simultaneity) అన్న భావన ఎలా సమూలంగా మారిపోతుందో గమనించొచ్చు.

ఎన్నో సందర్భాల్లో మనం దూరంలో ఉన్న రెండు చోట్ల రెండు సంఘటనలు ఒకేసారి జరిగాయని చెప్పుకుంటుంటాం. ఉదాహరణకి ’బొంబాయిలో బాంబు పేలిన తరుణంలో, నేను ఆఫీసు నుండి ఇంటికి తిరిగి వస్తున్నాను,” అని ఎవరో అన్నారు అనుకుందాం. ఆ మాట మనకి పూర్తిగా అర్థవంతంగా అనిపిస్తుంది. కాని ఆ వాక్యానికి అసలు అర్థం లేదని సులభంగా నిరూపిస్తాను.

(సశేషం...)





3 comments

  1. సూపరు...చాలా అధ్బుతమైన వ్యాసం....

    కాని నాకో చిన్న సందేహం...

    హీరో గారు కాంతి వేగం లో ౩ వంతు అంటే 1 /౩*C కదా....మీరు ౩/4 C వేసారెంటి.....

    "ఉదాహరణకి ఓ రైలు కాంతి వేగంలో మూడోవంతు వేగంతో కదులుతోంది అనుకుందాం. దాని మీద ఓ హీరో ఎవడో కాంతి వేగంలో మూడోవంతు వేగంతో ఉరుకుతున్నాడు అనుకుందాం.
    పైన చెప్పుకున్న ’వేగాల కూడిక’ సిద్ధాంతం ప్రకారం, రైలు బయట నుండి చూసే వారికి హీరో కాంతి వేగానికి ఒకటిన్నర రెట్లు వేగంతో కదులుతున్నట్టు అనిపిస్తుంది!"

    1/3+1/3=2/3 కదా...మరి 1.5 ani రాసారేంటి??

     
  2. @ స్థితప్రజ్ఞుడు
    మూడొ వంతు అంటే ... నాలుగింట మూడొ వంతు (3/4) అని..... 1/3 కాదు.. ఇప్పుడు అన్ని లేక్కలు సరిపొతాయి (1.5 తొ సహ) .. చూడండి.

     
  3. అవును. చిన్న పొరబాటు చేశాను. కాంతి వేగంలో మూడో వంతు కాదు. ముప్పావు వంతు (3/4) అని ఉండాలి. అప్పుడు సరిపోతుంది.

     

Post a Comment

postlink

సైన్సు పుస్తకాలు ఇక్కడ నుంచి కొనవచ్చు.. click on image

అంతరిక్షం చూసొద్దాం రండి

"తారావళీ సూపర్ ట్రావెల్స్" తరపున స్వాగతం... సుస్వాగతం!" "తారావళీ సూపర్ ట్రావెల్స్" గురించి ప్రత్యేకించి మీకు చెప్పనవసరం లేదు. తారాంతర యాత్రా సేవలు అందించడంలో మాకు 120 ఏళ్ల అనుభవం ఉంది. మా హెడ్ క్వార్టర్స్ భూమి మీదే ఉన్నా, సౌరమండలం బయట మాకు చాలా బ్రాంచీలు ఉన్నాయని మీకు బాగా తెలుసు. అంతరిక్షానికి వెళ్ళడానికి ఇక్కడ నొక్కండి

Printer-friendly gadget

Print

ఈ బ్లాగులోని పోస్ట్ లు ఆటోమేటిక్ గా మీ మెయిల్ ఇన్బాక్స్ లోకి చేరడానికి మీ ఈ-మెయిల్ ఐడీని ఎంటర్ చేసి చందాదారులు కండి Enter your email address:

Delivered by FeedBurner

Total

Blogumulus by Roy Tanck and Amanda FazaniInstalled by CahayaBiru.com

Label Category

Followers

archive

Total Pageviews

There was an error in this gadget
There was an error in this gadget

విజ్ఞానులు

GuestBooker 2.5

Recent Posts

Popular Posts

Follow by Email