"అది 1881 వ సంవత్సరం. ఆగస్టు నెల.
పెషావర్ జిల్లా, బక్షాళి గ్రామం. మార్ధాన్. బక్షాళి రహదారికి తూర్పు పక్కనే ఉన్న మట్టి దిబ్బలు. ఒకప్పుడు అక్కడ ఉన్న ఒక గ్రామము శిధిలమై ఆ మట్టి దిబ్బల్లో, రాళ్లు రప్పల్లో కలిసిపోయి వుంది. ఎవరో బహుశా ఏ నిధి నిక్షేపాల కోసమో ఓ దిబ్బను తవ్వుతున్నారు. క్రమంగా రాళ్లు, రప్పలు, ఒక శిధిల గృహం బయటపడ్డాయి. అందులో నేల మీద ఒక మూల త్రిభుజాకృతిలో ’దివా’ అనబడే రాతినిర్మాణము, వ్రాయటానికి ఉపయోగించే సుద్ద, అడుగున చిన్న చిన్న రంధ్రాలతో ఉన్న పెద్ద మట్టి పాత్ర ఉన్నాయి. వాటిని ఆశగా బయటికి తీశారు. వాళ్లు ఆశించిన నిధి నిక్షేపాలేవీ లేవు. కాని అంతకన్నా విలువైనదే ఉన్నది. శిధిలస్థితిలో ఉన్న భూర్జపత్రాల గ్రంథం ఒకటి అందులో ఉంది. అజాగ్రత్తగా తీయటంలో మరికొంత శిధిలమయ్యింది. ఎలాగోలా పూర్తిగా శిధిలం కాకమునుపే అది లాహోరు జేరింది. కొంతలో కొంత నయం. దాని మీద పరిశోధనలు జరిగి కొన్ని అంశాలు 1888 లో వెలుగులోకి వచ్చాయి. దాదాపు ప్రతీ భారతీయ పురాతన వ్రాతప్రతులకు ఏ దురదృష్టము పట్టిందో అలాగే ఇది కూడా విదేశాలకు చేరింది. ప్రస్తుతము అమూల్యమైన ఈ వ్రాతప్రతి బొడిలియన్ లైబ్రరీ (Bodleian library), ఆక్స్ ఫర్డ్ అధీనంలో ఉంది.
"1927 లో రెండు భాగాలుగా, 1933 లోమూడవ భాగంగా భాక్షాళి వ్రాతప్రతిలోని అంశాలు ప్రచురించబడ్డాయి. సుమారు 70 భూర్జ పత్రాలలో అంకగణిత, బీజగణిత అత్యున్నత భావాలు, సమస్యలు, సాధనలు గల్గి వున్న అపురూప గ్రంథమిది. అది ఎనిమిదవ శతాబ్దములో తిరిగి వ్రాయబడిన భూర్జపత్ర గ్రంథమయినప్పటికి దీని మూలప్రతి క్రీ.పూ. 200 నుండి క్రీ.శ. 200 లోపు ఎప్పుడో ఒకప్పుడు వ్రాయబడి ఉంటుందని దాని లోని సందర్భము, భాష, శైలి, సాహిత్య విధానము, ఛందస్సు వంటి అంశాల ఆధారంగా నిర్ణయించారు. వేద కాలం నాటి గణితానికి, ఆర్యభటతో ప్రారంభమైన సిద్ధాంత గణితానికి మధ్య కాలపు అగాధాన్ని ఈ గ్రంథము చాలా వరకు పూర్తి చేసి ఒక వారధిగా పనిచేస్తుంది."
బక్షాళి వ్రాతప్రతిలో కనిపించిన కొన్ని గణిత విశేషాలు:
(http://www.gap-system.org/~history/HistTopics/Bakhshali_manuscript.html)
1. వర్గమూలాన్ని (square root) కనుక్కోవడానికి ఒక సూత్రం:
sqrt(Q) = sqrt(A^2 + b) = A + b/2A - (b/2A)^2/(2(A+b/2A))
ఉదాహరణకి Q = 41, అనుకుందాం. అది వర్గం కాదు. కనుక దాని కన్నా తక్కువై, అత్యంత సమీపంలో ఉన్న వర్గాన్ని తీసుకోవాలి. అది 36. అంటే A=6. మరి Q = A^2 + b, కనుక b = 41-36 = 5 అవుతుంది. A, b విలువలని పై సూత్రంలో ప్రతిక్షేపిస్తే,
sqrt(Q) = 6.403138528 అని వస్తుంది. ఇది ఆధునిక విలువ అయిన 6.403124237 తో నాలుగు దశాంశ స్థానాల వరకు సరిపోతోంది.
2. బక్షాళి వ్రాతప్రతిలో మరో విశేషం అనిర్దేశిత సమీకరణాలు (indeterminate equations). అంటే పూర్తి సమాచారం లేకుండా పరిష్కారం కనుక్కోవలసిన సమీకరణాలు. ఉదాహరణకి -
ఒక వర్తకుడి వద్ద 7 అశ్వాలు ఉన్నాయి. మరో వ్యక్తి వద్ద 9 హయాలు ఉన్నాయి. మూడో వ్యక్తి వద్ద 10 ఒంటెలు ఉన్నాయి. ప్రతి ఒక్కరు మిగతా ఇద్దరికీ చెరో జంతువు సమర్పించుకుంటారు. ఇప్పుడు అందరి వద్ద ఉన్న జంతువుల విలువ ఒక్కటే. ఒక్కొక్క జంతువు విలువ కనుక్కోండి. ఒక్కొక్క వ్యక్తి వద్ద ఉండే మొత్తం జంతువుల విలువ కనుక్కోండి.
(ఇక్కడ ’అశ్వం’, ’హయం’ అంటే రెండు విభిన్న రకాల గుర్రాలు అన్న అర్థంలో వాడినట్టుంది.)
అశ్వం ఖరీదు = a
హయం ఖరీదు = b
ఒంటె ఖరీదు = c
అనుకుందాం.
మొదటి వ్యక్తి వద్ద మొత్తం జంతువుల విలువ = 5a + b + c
రెండవ వ్యక్తి వద్ద మొత్తం జంతువుల విలువ = a + 7b + c
మూడో వ్యక్తి వద్ద మొత్తం జంతువుల విలువ = a + b + 8c
ఈ మూడు విలువలు ఒక్కటే కనుక,
5a + b + c =a + 7b + c=a + b + 8c = k
అనుకుందాం.
దీని నుంచి,
4a=6b=7c=k-(a+b+c)
అని తెలుస్తుంది.
ఈ సమీకరణాల నుంచి a,b,c ల నిష్పత్తి తెలుస్తుంది గాని, అసలు విలువ తెలియదు. తెలుసుకోలేము కూడా. అందుకే వాటిని అనిర్దేశిత సమీకరణాలు అంటారు. ఏ విలువైనా తీసుకోవచ్చు కనుక సాధ్యమైన విలువలలో కనిష్ఠ విలువలని తీసుకుందాం.
ఇప్పుడు (k-(a+b+c)) అనే విలువ 4, 6, 7 అనే అంకెల చేత భాగింపబడాలి కనుక,
k-(a+b+c) = 4 X 6 X7
అనుకోవచ్చు, అంటే 168 అవుతుంది. బక్షాళీ వ్రాతపత్రి ఈ విలువనే తీసుకుంటుంది. కాని అది కొంచెం పెద్ద సంఖ్య. అంత కన్నా చిన్నది కావాలంటే,
4, 6, 7 ల కనిష్ఠ సామాన్య గుణకం (least common multiple - lcm) ని తీసుకుంటే సరిపోతుంది. దాని విలువ 84.
4a=6b=7c=84
అయితే a=21, b=14, c=12, అవుతుంది.
mundu oopigga chadivi,deeni meeda intrest unte.appudu meeru cheppina book superb antaaru...evaremanna..adi manadi anna garvam matram manake sontham..